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Abstract

Asset allocation decisions are critical for investors with diversiåed portfolios. Institutional
investors must manage their strategic asset mix over time to achieve favorable returns subject
to various uncertainties, policy and legal constraints, and other requirements. In order to
determine the asset mix explicitly, one may use a multi-period portfolio optimization model.

The concept of scenarios is typically employed for modeling random parameters in multi-
period stochastic programming (MSP) models, and scenarios are constructed via a tree
structure. Another approach for developing dynamic investment strategies, which oãers an
alternative to stochastic programming, is the dynamic stochastic control. Recently, an alter-
native stochastic programming model with simulated paths was proposed by Hibiki (2001b,
2001c). Hibiki(2003) developed the general formulation for several investment strategies, and
highlight its features and properties using some numerical tests. Scenarios are constructed
via a simulated path structure. The advantage of simulated paths comparing to scenario
trees is higher accuracy of description of uncertainties associated with asset returns. In addi-
tion, we can make conditional decisions in this framework similarly to a scenario tree model.
This model is called a hybrid model. It can be easily implemented and eéciently solved
using sophisticated mathematical programming software.

In this paper, we compare two types of multi-period stochastic optimization (MPSO)
models, and clarify that the hybrid model can evaluate and control risk better than the
scenario tree model using some numerical tests. According to the numerical results, the
eécient frontier of the hybrid model with the åxed-proportion strategy dominates that of
the scenario tree model when we evaluate them on the simulated paths. Moreover, the
optimal solutions of the hybrid model is more appropriate than those of the scenario tree
model, which are very extream ones.
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1 Introduction

Rational investors maximize the expected utility of return from their investment portfolio, or

minimize the risk exposure of return, subject to the required expected return. They must decide

on their optimal portfolio in securities in order to meet their satisfaction. This paper discusses

optimal dynamic investment policies for investors, who make the investment decision in each
asset category over time. This problem is called \dynamic asset allocation".

Asset allocation decisions are critical for investors with diversiåed portfolios. Institutional

investors must manage their strategic asset mix over time to achieve favorable returns, in pres-

ence of uncertainties and subject to various legal constraints, policies, and other requirements.

In order to determine the asset mix explicitly, a multi-period portfolio optimization model can

be used.

It is critical for stochastic modeling to handle uncertainties and investment decisions appro-

priately. The decisions have to be independent from knowledge of actual paths that will occur.

Thus, we must deåne a set of decision variables and a set of constraints to prevent the opti-

mization model from being solved by anticipating the event in the future. In addition, we need

a suécient number of paths to get a better accuracy with respect to the future possible events.
The concept of scenarios is typically employed for modeling random parameters in multi-

period stochastic programming (MSP) models. Scenarios are constructed via a tree structure

(see Mulvey and Ziemba, 1995 and 1998 for a detail discussion). This model is based on the

expansion of the decision space, taking into account the conditional nature of the scenario tree.

Conditional decisions are made at each node, subject to the modeling constraints. To ensure that

the constructed representative set of scenarios covers the set of possibilities to a suécient degree,

the number of decision variables and constraints in the scenario tree may grow exponentially.

This model is called a scenario tree model.

Recently, an alternative stochastic programming model using simulated paths was proposed by

Hibiki (2001b). Hibiki(2003) developed the general formulation for several investment strategies,

and highlight its features and properties by using some numerical tests. Scenarios are constructed
via a simulated path structure. We can generate sample paths associated with asset returns using

the Monte Carlo simulation method. Therefore, the advantage of simulated paths compared to

a scenario tree gives a better descriptive accuracy of the uncertainties associated with asset

returns. In addition, we can make conditional decisions in this framework as with a scenario

tree model. This model is called a \hybrid model", because it allows for better accuracy in

describing the uncertainties as well as for conditional decisions 1 . It can be easily implemented

and eéciently solved using sophisticated mathematical programming software.

The hybrid model is developed to overcome the shortcoming of the scenario tree model associ-
1Hibiki(2000 and 2001a) developed the simulated path model. The model also requires simulated paths to

have the accuracy of uncertainties, but it cannot make conditional decisions. The hybrid model is allowed to
expand the decision space and to make conditional decisions as used in the scenario tree model. The simulated
path model is a special version of the hybrid model.
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ated with the uncertainties. Therefore, it is important to answer the question how quantitatively

the hybrid model is better than the scenario tree model, which was not shown in the previous

papers(Hibiki, 2001b and 2003). In this paper, we compare two types of multi-period stochastic

optimization (MPSO) models, and clarify that the hybrid model can evaluate and control risk

better than the scenario tree model by using some numerical tests.

We need the following developments to solve this problem. At årst, we develop the iterative

algorithm to solve the hybrid model with the åxed-proportion strategy, which is formulated as

the non-convex program. This is because two kinds of models should be compared using the

same strategy. Second, we propose the procedure of comparing them in the simulated path

framework.

The paper is organized as follows. Section 2 presents the concept and formulations of two

kinds of models, and develops the iterative algorithm to solve the hybrid model with the åxed-
proportion strategy. In Section 3, we demonstrate the scenario generating process and the

procedure of generating the extended decision tree, and explain how to generate a scenario tree

from simulated paths to compare the scenario tree model with the hybrid model. Section 4

presents some numerical tests for various cases. Section 5 provides some concluding remarks

and outlines our future research.

2 Multi-period stochastic programming models

2.1 Modeling for uncertainties and conditional decisions
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Figure 1: Scenario tree and simulated paths

Scenarios of asset returns are typically constructed via a tree structure in the multi-period

stochastic programming problem as in the left side of Figure 1. Another description of scenarios

is simulated paths. We can sample simulated paths of asset returns on each simulation trial.
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An example of simulated paths is shown as in the right side of Figure 1.

Hibiki (2001b) develops the hybrid model in a multi-period optimization framework. Discrete

values of asset returns are generated by Monte Carlo simulation to describe the uncertainties

more accurately than would the scenario tree, as in the left side of Figure 1. A diãerent decision

rule has to be deåned in the simulated path approach from the one in the scenario tree approach.

The reason is that the model can be solved by anticipating the event in the future if each

decision is made on each path. Therefore, the decision rule must be deåned to satisfy the non-

anticipativity condition 2 in the simulated path framework. Several bundles of simulated paths

are made at each time to have a åxed strategy (decision rule) for risky assets 3 . The bundles, or

\åxed-decision nodes", are shown as in the left side of Figure 2. Figure 2 represents 12 simulated

paths over three periods. It is called a \3-2" branching tree, because it has three bundles at

time 1, and more two bundles of paths within each bundle at time 2. The right side of Figure
2 is described as the tree structure, which is called the \extended decision tree", and shows the

same structure as the left one. See Hibiki(2003), the bundling procedure for details.
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Figure 2: Simulated paths and extended decision tree

2.2 Preparation

We invest in n risky assets and cash. The investment is made at time 0 (present), and time T

is the planning horizon.
2The condition which prevents the optimization model from being solved by anticipating the future is called

the non-anticipativity condition.
3The decisions on cash can be path-dependent, because cash return is based on the interest rate that is risk-free

at each time when decision is made.
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2.2.1 Notations

We have three kinds of notations; `(Scenario)' denotes notations for the scenario tree model,

`(Hybrid)' denotes notations for the hybrid model, and `(Both)' denotes notations for both

models. The notations in this model are as follows.

(1) Sets

St : (Scenario) set of states at time t, (s 2 St),
: (Hybrid) set of åxed-decision nodes at time t, (s 2 St).

V st : (Hybrid) set of paths including any åxed-decision node s at time t, (i 2 V s
t ).

(2) Parameters

ps : (Scenario) probability of scenario s at the planning horizon 4 .

I : (Hybrid) number of simulated paths.

öj0 : (Both) price of risky asset j at time 0, (j = 1; . . . ; n).

ösjt : (Scenario) price of asset j of state s at time t, (j = 1; . . . ;n; t = 1; . . . ;T ; s 2 St).
ö(i)
jt : (Hybrid) price of risky asset j of path i at time t, (j = 1; . . . ;n; t = 1; . . . ; T; i =
1; . . . ; I).

r0 : (Both) interest rate in period 1, (the rate at time 0 is used).

rs0tÄ1 : (Scenario) interest rate in period t Ä 1, (the rate of state s0 at time t Ä 1 is used),

(t = 2; . . . ; T; s0 2 StÄ1).

r(i)
tÄ1 : (Hybrid) interest rate in period t (the rate of path i at time t Ä 1 is used), (t =

2; . . . ;T ; i = 1; . . . ; I).

W0 : (Both) initial wealth.

WG : (Both) target terminal wealth.

ç : (Both) risk averse coeécient.

(3) Decision variables

zj0 : (Both) investment unit for asset j and time 0, (j = 1; . . . ;n).

zsjt : (Scenario) investment unit for asset j, time t, and state s,

: (Hybrid) base investment unit 5 for asset j, time t, and node s
(j = 1; . . . ; n; t = 1; . . . ; T Ä1; s 2 St).

v0 : (Both) cash at time 0

vst : (Scenario) cash of state s at time t, (t = 1; . . . ;T Ä 1; s 2 St).
v(i)
t : (Hybrid) cash of path i at time t, (t = 1; . . . ; T Ä 1; i = 1; . . . ; I).

qs : (Scenario) shortfall below target terminal wealth of scenario s, (s 2 ST ).
4The state s corresponds to the scenario s at the planning horizon.
5The base investment unit is deåned as the control variable of the investment unit. Details are shown in

Section 2.4.1.
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q(i) : (Hybrid) shortfall below target terminal wealth of path i, (i = 1; . . . ; I).

The variables for risky assets are node-dependent for both models. Cash variables are also

node-dependent for a scenario tree model, however they have to be path-dependent for a hybrid

model.

2.2.2 Objective function

The objective function to determine the asset mix is the one which maximizes the expected

utility. The expected utility is deåned using two kinds of measures; the expected terminal

wealth E [WT ] and the årst-order lower partial moment (LPM1) of terminal wealth [Bawa and

Lindenberg(1977), Harlow(1991)].

Expected utility = E [WT] ÄçÅLPM1 (1)

The former corresponds to the return measure and the latter corresponds to the risk measure.

The lower partial moment is a downside risk measure, and expresses the tail risk of the relevant

distribution of wealth below target.

E [WT ] and LPM1 for both models are calculated as follows 6 ;

(Scenario) : E [WT ] =
X
s2ST

psW s
T ; LPM1 =

X
s2ST

ps jWs
T ÄWGjÄ (2)

(Hybrid) : E [WT ] =
1
I

IX
i=1

W (i)
T ; LPM1 =

1
I

IX
i=1

åååW (i)
T ÄWG

ååå
Ä

(3)

where jajÄ = max(Äa;0). W s
T is the terminal wealth of scenario s in the scenario tree model,

and W (i)
T is the terminal wealth of path i in the hybrid model.

2.3 The scenario tree model

Generally considered, we can deåne three kinds of decision variables; investment units, invest-

ment values, and investment proportions. Three kinds of formulations with the corresponding

decision variables lead equivalent optimal solutions in the scenario tree model. The constraints

are non-linear in the case of the investment proportions, however those can be linear in the case

of the investment values and investment units. The investment units are used as the decision

variables in view of the solution technique.

A typical formulation is follows 7 ;

Maximize
X
s2ST

psW s
T Äç

0@ X
s2ST

psqs
1A (4)

subject to
6The LPM for a continuous distribution of terminal wealth ~WT is described as follows:

LPMk ë
Z WG

Ä1
(WG Ä ~WT )kf( ~WT )d ~WT

The risk measure corresponds to the årst-order LPM for an empirical (discrete) distribution of terminal wealth.
7Other constraints such as boundary conditions, policy and legal constraints, and other requirements can be

easily added.
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nX
j=1

öj0zj0 + v0 = W0 (5)

(W s
1 =)

nX
j=1

ösj1z
s
j1 + vs1 =

nX
j=1

ösj1zj0 + (1 + r0)v0 ; (s 2 S1) (6)

(W s
t =)

nX
j=1

ösjtzsjt + vst =
nX
j=1

ösjtzs
0
j;tÄ1 + (1 + rs

0
tÄ1)vs

0
tÄ1; (t = 2; . . . ;T Ä1; s 2 St) (7)

W s
T =

nX
j=1

ösjTz
s0
j;TÄ1 + (1 + rs0TÄ1)v

s0
TÄ1 ; (s 2 ST) (8)

W s
T + qs ïWG ; (s2 ST ) (9)

zj0 ï 0; (j = 1; . . . ; n); zsjt ï 0; (j = 1; . . . ;n; t = 1; . . . ;T Ä 1; s 2 St) (10)

v0 ï 0; vst ï 0; (t = 1; . . . ;T Ä 1; s 2 St) (11)

qs ï 0; (s 2 ST ) (12)

Constraint (5) is a budget constraint at time 0. Constraints (6) and (7) are cash çow constraints

at time t, the values of both sides of which show the wealth of state s at time t. We denote s0 in

Constraint (7) to be the state at time t Ä1 connected with the state at time t. Constraint (8)

shows the terminal wealth. We can minimize LPM1 in Equation (2) by minimizing the second

term of the objective function under the Constraint (9). Constraints (10) - (12) are non-negative

constraints.

2.4 The hybrid model

2.4.1 Investment strategies with investment unit functions

We can select a åxed strategy for risky assets, such as åxed-proportion strategy, åxed-value

strategy, åxed-unit strategy, and so on. Even if we select investment units as decision variables,

we do not have to åx investment units at each node. If we deåne the function of the decision rule

associated with the investment units, we can invest the diãerent units on each path through a

node. This is called the \investment unit function". Moreover, we can describe other strategies

such as åxed-proportion strategy and åxed-value strategy by using this function. The investment

unit function is deåned to show various investment strategies, as follows.

h(i)(zsjt) = a(i)
jt z

s
jt (13)

where a(i)
jt is the investment unit parameter that must be independent on the rate of returns of

path i after time t to keep non-anticipativity condition. We consider three kinds of investment
strategies with investment unit functions.

(1) Fixed-unit strategy : h(i)(zsjt) = zsjt

All risky assets have the same investment units on any path at each node, respectively. How-

ever, cash is diãerent in each path.
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(2) Fixed-value strategy : h(i)(zsjt) =
†
öj0
ö(i)jt

!
zsjt

All risky assets have the same investment values on any path at each node, respectively.

However, cash is diãerent in each path 8 .

(3) Fixed-proportion strategy : h(i)(zsjt) =
†
W (i)
t

ö(i)jt

!
zsjt

All risky assets and cash have the same investment proportions on any path at each node,

respectively.

Constraints are linear in the åxed-unit strategy and the åxed-value strategy. But constraints
are non-convex in the åxed-proportion strategy because W(i)

t is a function of decision variables.

The iterative method is proposed to solve the non-convex program approximately in Section 2.5.

2.4.2 Formulation

We show a typical formulation, which structure is the same as that of the scenario tree model 9;

Maximize
1
I

IX
i=1

W (i)
T Äç

†
1
I

IX
i=1

q(i)
!

(14)

subject to
nX
j=1

öj0zj0 + v0 =W0 (15)

nX
j=1

ö(i)
j1 zj0 + (1 + r0)v0 =

nX
j=1

ö(i)
j1h

(i)(zsj1) + v(i)
1 ; (s 2 S1; i 2 V s

1 ) (16)

nX
j=1

ö(i)
jt h

(i)(zs0j;tÄ1) +
ê
1 + r(i)

tÄ1

ë
v(i)
tÄ1 =

nX
j=1

ö(i)
jt h

(i)(zsjt) + v(i)
t ;

(t = 2; . . . ; T Ä 1; s2 St; i 2 V s
t ) (17)

W (i)
T =

nX
j=1

ö(i)
jTh

(i)(zs0j;TÄ1) +
ê
1 + r(i)

TÄ1

ë
v(i)
TÄ1; (s0 2 STÄ1; i 2 V s0

TÄ1) (18)

W (i)
T + q(i) ïWG; (i = 1; . . . ; I) (19)

zj0 ï 0; (j = 1; . . . ; n); zsjt ï 0; (j = 1; . . . ;n; t = 1; . . . ; T Ä 1; s2 St) (20)

v0 ï 0; v(i)
t ï 0; (t = 1; . . . ; T Ä1; i = 1; . . . ; I) (21)

q(i) ï 0; (i = 1; . . . ; I) (22)

If we select the strategy which has a linear investment unit function, we can formulate as a

linear programming problem, and solve a large-scale problem easily in practical use.
8This strategy is a kind of contrarian investment strategies, because an investment unit tends to be decreased

when price goes up, and tends to be increased when price goes down.

9Constraint (15) is a budget constraint at time 0. Constraints (16) and (17) are cash çow constraints at time
t. Constraint (18) shows the terminal wealth. We can minimize LPM1 in Equation (3) by minimizing the second
term of the objective function under the Constraint (19). Constraints (20) - (22) are non-negative constraints.
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2.5 Iterative algorithm to solve the hybrid model with the åxed-proportion
strategy

According to our previous numerical tests for the hybrid model, the eécient frontier of the åxed-

proportion strategy dominates the eécient frontier of the åxed-unit strategy in our examples [see

Hibiki(2003) for details]. Therefore, we have to solve the hybrid model with the åxed-proportion

strategy 10 to compare it with the scenario tree model.

Suppose that we can derive the optimal solutions of the hybrid model with the åxed-proportion

strategy, and calculate the wealth of path i at time t, W (i)É
t . If we set up h(i)(zsjt) =

†
W(i)É
t

ö(i)
jt

!
zsjt

as the investment unit function, and solve the problem, the same solutions are supposed to be

obtained. We develop the iterative algorithm using this feature to solve the hybrid model with

the åxed-proportion strategy approximately. Algorithm is as follows;

Step 1: We solve the problem with the åxed-unit strategy and calculate wealth of path i at

time t, W (i)É
t(0) . Denote Obj0 to be the objective function value, and set k = 1.

Step 2: We set up h(i)(zsjt) =
†
W (i)É
t(kÄ 1)

ö(i)
jt

!
zsjt as the investment unit function at the k-th iter-

ation, and solve the problem. We calculate wealth of path i at time t, W (i)É
t(k) , and

objective function value Objk.

Step 3: Stop if the value ObjkÄObjkÄ1 is lower than the tolerance. Otherwise, set k † k+1,

and return to Step 2.

This algorithm does not guarantee to derive the global optimal solutions for the åxed-proportion

strategy, but optimal solutions are stably derived whatever initial point is set, because we solve

the linear programming problem iteratively.

We evaluate this solution algorithm from two points of view; the objective function value

and the optimal investment proportions. Table 1 shows the improvement rate of the objective
function for 15 kinds of risk-averse coeécients. These are the normalized values of the objective

functions of the årst iteration to the åfth iteration so that objective function value of the åfth

iteration(Obj5) minus objective function value of the åxed-unit strategy(Obj0) is equal to 100%.

Objective function values is almost improved up to the åfth iteration. And more than 99% is

improved up to the second iteration.

Table 1: Improvement rate of the objective function
ç 10 5 4 3 2 1.5 1 0.8 0.6 0.5 0.4 0.3 0.2 0.1 max Ave.

k = 1 99.2% 96.1% 95.1% 95.3% 95.1% 95.6% 95.1% 95.0% 94.3% 94.4% 94.4% 94.3% 100.0% 91.2% 85.9% 94.7%
k = 2 0.6% 3.8% 4.6% 4.6% 4.7% 4.2% 4.8% 4.9% 5.5% 5.4% 5.5% 5.6% 0.0% 8.3% 13.3% 5.1%
k = 3 0.2% 0.1% 0.2% 0.1% 0.2% 0.2% 0.1% 0.2% 0.1% 0.1% 0.1% 0.1% 0.0% 0.4% 0.8% 0.2%
k = 4 0.1% -0.1% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
k = 5 0.0% 0.0% 0.0% -0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

up to 2 99.8% 100.0% 99.7% 99.9% 99.8% 99.8% 99.8% 99.8% 99.8% 99.9% 99.9% 99.9% 100.0% 99.5% 99.2% 99.8%

10We tried to solve this problem using nonlinear programming tools, but we could not derive optimal solutions
stably because of non-convex constraints.
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Table 2 shows the average of standard deviation of investment ratios on the paths through

each node at time t. #n denotes the n-th iteration. If this value is equal to 0, this shows that

investment ratios at each node are the same value. This means that the åxed-proportion strategy

can be almost implemented. The smaller the value, the more approximate the investment ratios

on the paths. All of values are lower than 0.1% at the second iteration. Because of these

results and saving computation time, we execute two iterations to solve the model with the

åxed-proportion strategy in this paper.

Table 2: Average of standard deviation of investment ratios on the paths through each node
min # 0 # 1 # 2 # 3 ç= 10 # 0 # 1 # 2 # 3 ç= 5 # 0 # 1 # 2 # 3 ç= 4 # 0 # 1 # 2 # 3

1 0.75% 0.03% 0.00% 0.02% 1 1.04% 0.04% 0.00% 0.00% 1 1.50% 0.07% 0.01% 0.01% 1 1.54% 0.09% 0.01% 0.01%
cash 2 0.43% 0.05% 0.01% 0.00% cash 2 0.54% 0.04% 0.02% 0.01% cash 2 0.74% 0.03% 0.01% 0.02% cash 2 0.84% 0.04% 0.01% 0.01%

3 0.76% 0.03% 0.02% 0.01% 3 1.06% 0.04% 0.02% 0.01% 3 1.41% 0.06% 0.01% 0.02% 3 1.50% 0.07% 0.02% 0.01%
1 0.14% 0.00% 0.00% | 1 0.90% 0.00% 0.00% | 1 2.07% 0.00% 0.00% | 1 1.54% 0.00% 0.00% |

stock 2 0.26% 0.00% 0.00% | stock 2 0.28% 0.00% 0.00% | stock 2 0.49% 0.01% 0.01% 0.01% stock 2 0.68% 0.01% 0.00% 0.02%
3 0.45% 0.00% 0.00% 0.00% 3 0.77% 0.01% 0.01% 0.00% 3 1.11% 0.03% 0.01% 0.01% 3 1.16% 0.03% 0.01% 0.02%
1 0.13% 0.00% 0.02% | 1 0.26% 0.02% 0.01% 0.00% 1 0.30% 0.01% 0.02% 0.01% 1 0.34% 0.02% 0.03% 0.03%

bond 2 0.35% 0.01% 0.02% 0.00% bond 2 0.43% 0.01% 0.01% 0.02% bond 2 0.54% 0.03% 0.02% 0.03% bond 2 0.62% 0.03% 0.03% 0.01%
3 0.57% 0.02% 0.02% 0.01% 3 0.68% 0.03% 0.03% 0.01% 3 0.87% 0.04% 0.02% 0.02% 3 0.93% 0.04% 0.03% 0.02%
1 0.34% 0.02% 0.00% 0.00% 1 0.48% 0.01% 0.01% 0.00% 1 0.66% 0.00% 0.02% | 1 0.77% 0.03% 0.03% 0.00%

CB 2 0.45% 0.02% 0.01% 0.00% CB 2 0.73% 0.02% 0.02% 0.01% CB 2 0.89% 0.02% 0.01% 0.00% CB 2 0.89% 0.02% 0.01% 0.02%
3 0.97% 0.02% 0.02% 0.01% 3 1.37% 0.03% 0.02% 0.03% 3 1.45% 0.05% 0.02% 0.01% 3 1.46% 0.05% 0.03% 0.03%

ç = 3 # 0 # 1 # 2 # 3 ç = 2 # 0 # 1 # 2 # 3 ç= 1:5 # 0 # 1 # 2 # 3 ç= 1 # 0 # 1 # 2 # 3
1 1.58% 0.09% 0.01% 0.00% 1 1.62% 0.14% 0.02% 0.00% 1 1.63% 0.12% 0.01% 0.02% 1 1.70% 0.13% 0.01% 0.00%

cash 2 1.00% 0.04% 0.01% 0.01% cash 2 1.27% 0.04% 0.01% 0.01% cash 2 1.44% 0.04% 0.01% 0.00% cash 2 1.81% 0.06% 0.01% 0.00%
3 1.69% 0.09% 0.01% 0.00% 3 1.99% 0.12% 0.01% 0.00% 3 2.23% 0.14% 0.01% 0.00% 3 2.55% 0.17% 0.01% 0.00%
1 2.03% 0.00% 0.00% | 1 2.04% 0.00% 0.01% | 1 2.03% 0.01% 0.00% 0.00% 1 0.57% 0.00% 0.02% |

stock 2 0.88% 0.02% 0.01% 0.00% stock 2 1.33% 0.04% 0.02% 0.04% stock 2 1.55% 0.04% 0.02% 0.00% stock 2 1.95% 0.05% 0.02% 0.01%
3 1.34% 0.05% 0.01% 0.01% 3 1.78% 0.11% 0.01% 0.02% 3 1.94% 0.12% 0.02% 0.02% 3 2.40% 0.18% 0.02% 0.01%
1 0.48% 0.05% 0.04% 0.03% 1 0.57% 0.04% 0.00% 0.00% 1 0.70% 0.04% 0.04% 0.02% 1 0.88% 0.02% 0.05% 0.01%

bond 2 0.62% 0.03% 0.02% 0.02% bond 2 0.75% 0.04% 0.02% 0.03% bond 2 0.92% 0.04% 0.01% 0.03% bond 2 1.08% 0.03% 0.02% 0.03%
3 1.10% 0.05% 0.03% 0.02% 3 1.30% 0.05% 0.03% 0.03% 3 1.51% 0.08% 0.04% 0.03% 3 1.84% 0.09% 0.03% 0.03%
1 0.86% 0.01% 0.03% 0.03% 1 0.94% 0.00% 0.00% | 1 0.97% 0.05% 0.00% 0.00% 1 0.98% 0.02% 0.00% 0.05%

CB 2 1.07% 0.03% 0.01% 0.02% CB 2 1.25% 0.03% 0.02% 0.01% CB 2 1.30% 0.03% 0.03% 0.01% CB 2 1.41% 0.05% 0.02% 0.02%
3 1.59% 0.08% 0.02% 0.03% 3 1.68% 0.08% 0.02% 0.03% 3 1.79% 0.09% 0.03% 0.04% 3 1.83% 0.10% 0.02% 0.02%

ç = 0:8 # 0 # 1 # 2 # 3 ç = 0:6 # 0 # 1 # 2 # 3 ç= 0:5 # 0 # 1 # 2 # 3 ç= 0:4 # 0 # 1 # 2 # 3
1 1.76% 0.12% 0.01% 0.00% 1 1.69% 0.15% | 0.00% 1 1.64% 0.14% | 0.00% 1 1.53% 0.14% | 0.00%

cash 2 1.99% 0.06% 0.00% 0.00% cash 2 2.12% 0.08% 0.00% 0.00% cash 2 2.21% 0.07% 0.00% 0.00% cash 2 2.28% 0.06% 0.00% 0.00%
3 2.70% 0.19% 0.01% 0.00% 3 2.83% 0.23% 0.01% 0.00% 3 2.93% 0.23% 0.01% 0.00% 3 3.11% 0.22% 0.01% 0.00%
1 0.59% 0.01% 0.02% 0.02% 1 0.68% 0.00% 0.00% | 1 0.73% 0.01% 0.02% 0.00% 1 0.80% 0.00% 0.00% |

stock 2 2.10% 0.05% 0.01% 0.03% stock 2 2.02% 0.04% 0.00% 0.02% stock 2 2.16% 0.04% 0.01% 0.02% stock 2 2.05% 0.03% 0.02% 0.04%
3 2.56% 0.20% 0.02% 0.03% 3 2.65% 0.24% 0.03% 0.03% 3 2.71% 0.24% 0.02% 0.03% 3 2.53% 0.20% 0.02% 0.03%
1 1.19% 0.04% 0.03% 0.04% 1 1.32% 0.04% 0.04% 0.00% 1 1.42% 0.02% 0.04% 0.07% 1 1.52% 0.04% 0.03% 0.01%

bond 2 1.43% 0.03% 0.03% 0.04% bond 2 1.59% 0.05% 0.02% 0.01% bond 2 1.64% 0.04% 0.03% 0.03% bond 2 2.17% 0.06% 0.03% 0.04%
3 2.07% 0.10% 0.04% 0.02% 3 2.29% 0.11% 0.03% 0.03% 3 2.59% 0.13% 0.03% 0.03% 3 2.94% 0.13% 0.04% 0.03%
1 0.99% 0.03% 0.03% 0.09% 1 0.86% 0.04% 0.03% 0.00% 1 0.72% 0.02% 0.04% 0.10% 1 0.53% 0.07% 0.03% 0.01%

CB 2 1.54% 0.02% 0.02% 0.02% CB 2 1.65% 0.07% 0.05% 0.01% CB 2 1.56% 0.03% 0.01% 0.04% CB 2 1.34% 0.06% 0.02% 0.05%
3 1.95% 0.13% 0.03% 0.03% 3 2.04% 0.16% 0.02% 0.04% 3 1.86% 0.14% 0.04% 0.03% 3 1.76% 0.14% 0.02% 0.02%

ç = 0:3 # 0 # 1 # 2 # 3 ç = 0:2 # 0 # 1 # 2 # 3 ç= 0:1 # 0 # 1 # 2 # 3 max # 0 # 1 # 2 # 3
1 1.44% 0.14% 0.01% 0.00% 1 1.45% 0.16% | 0.00% 1 1.45% 0.16% | 0.00% 1 1.84% 0.81% | 0.00%

cash 2 2.47% 0.06% 0.00% 0.00% cash 2 2.80% 0.07% 0.00% 0.00% cash 2 2.80% 0.07% 0.00% 0.00% cash 2 3.94% 0.46% 0.00% 0.00%
3 3.37% 0.23% 0.00% 0.00% 3 3.54% 0.28% 0.01% 0.00% 3 3.54% 0.28% 0.01% 0.00% 3 4.51% 0.63% 0.05% 0.00%
1 0.90% 0.01% 0.01% 0.00% 1 1.05% 0.00% 0.04% | 1 1.05% 0.00% 0.04% | 1 0.00% 0.00% 0.00% |

stock 2 2.27% 0.02% 0.01% 0.04% stock 2 2.70% 0.04% 0.03% 0.02% stock 2 2.70% 0.04% 0.03% 0.02% stock 2 0.61% 1.32% 0.00% 0.00%
3 2.89% 0.21% 0.02% 0.04% 3 2.95% 0.20% 0.04% 0.04% 3 2.95% 0.20% 0.04% 0.04% 3 1.17% 1.08% 0.07% 0.00%
1 1.50% 0.03% 0.04% 0.01% 1 2.06% 0.02% 0.01% 0.00% 1 2.06% 0.02% 0.01% 0.00% 1 4.46% 0.00% 0.00% |

bond 2 2.29% 0.06% 0.04% 0.02% bond 2 2.95% 0.09% 0.03% 0.05% bond 2 2.95% 0.09% 0.03% 0.05% bond 2 5.08% 0.09% 0.00% 0.00%
3 3.35% 0.14% 0.03% 0.03% 3 3.58% 0.21% 0.03% 0.03% 3 3.58% 0.21% 0.03% 0.03% 3 5.64% 0.34% 0.00% 0.00%
1 0.31% 0.04% 0.03% 0.00% 1 0.55% 0.04% 0.04% 0.05% 1 0.55% 0.04% 0.04% 0.05% 1 1.74% 0.00% 0.00% |

CB 2 1.10% 0.06% 0.05% 0.02% CB 2 1.22% 0.06% 0.04% 0.04% CB 2 1.22% 0.06% 0.04% 0.04% CB 2 3.57% 0.05% 0.00% 0.00%
3 1.70% 0.14% 0.03% 0.03% 3 1.91% 0.21% 0.03% 0.02% 3 1.91% 0.21% 0.03% 0.02% 3 3.34% 0.33% 0.04% 0.00%

2.6 Comparison of the models

We explain the similarity and the diãerence between the scenario tree model and the hybrid

model in Figure 3. Suppose six scenarios over two periods and three nodes at time 1. ñ(i)
jt denotes

a rate of return of asset j, time t, and path i, and w(i)
jt denotes the decision on each path. There

are six states at both time 1 and time 2 in the hybrid model. There are three states at time 1
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in the scenario tree model. If six states are assumed in the hybrid model, two state values have

to be the same value. On the other hand, the conditional decisions are made similarly in both

models. For example, w(1)
jt has to be equal to w(2)

jt to keep the non-anticipativity condition. If

the number of states in the scenario tree model is equal to the number of åxed decision nodes in

the hybrid model, both models can make the same kind of conditional decisions despite of the

diãerent description of uncertainties.
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Figure 3: Comparison between the scenario tree model and the hybrid model

3 Scenario Generation

3.1 Generating simulated paths for the hybrid model

In general, scenarios associated with asset returns are generated according to the stochastic

diãerential equations or time series models. Mulvey and Thorlacius(1998) use Towers Perrin's

scenario generation system, \CAP: Link" to solve a multi-period stochastic programming prob-

lem for pension funds. A scenario system is based on a cascading set of stochastic diãerential

equations. The Russel-Yasuda model(See Carino et al., 1998a,1998b and 1998c) used for the

ALM of casualty insurance company, generates scenarios whose returns are created from a factor

model that incorporates dependence between periods.
Two kinds of models need diãerent kinds of scenario structures. However, it is diécult to

compare the results based on the diãerent scenario structures. Then, it is necessary to consider

how to generate scenarios based on the same possible situation and how to compare the results.

Consider two kinds of choices as follows;

è the `path to tree' procedure : First, we generate simulated paths, and secondly, we con-

struct the scenario tree based on the simulated paths.
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è the `tree to path' procedure : First, we construct a scenario tree, and secondly, we generate

the simulated paths based on the scenario tree.

In this paper, we choose the `path to tree' procedure, because of the following reasons.

(1) The sample path structure the hybrid model needs can be generated by Monte Carlo sim-

ulation as in the right side of Figure 1. If a scenario generation model is selected, we

can generate such sample paths easily by a standard procedure of Monte Carlo simulation
technique.

(2) It is diécult to construct the appropriate scenario tree from the stochastic diãerential equa-

tions or time-series models. This is because we need to describe asset returns appropriately

by a moderate number of scenarios 11 .

(3) The underlying scenarios should be described by the simulated paths because simulated

paths are superior to a scenario tree when describing the uncertainties.

(4) The scenario tree can be generated using the classifying mothod described in Section 3.2.

(See Section 3.3 for a detail discussion.)

It is important which model is selected because the optimal solutions change according to the

model. However, the main aim of this paper is to compare the multi-period optimization models

and to clarify the diãerence between two models. Then we use the following simple procedure

with the statistics associated with asset returns(expected rate of return, standard deviation and

correlation matrix of rate of return) to generate scenarios of rates of returns of n risky assets

and call rate.

The rate of return ñ(i)
jt is generated as follows, where asset 0 (j = 0) corresponds to call

rate.

1ç The rate of return of asset j in period t is normally distributed with mean ñjt and standard

deviation õjt, and it is generated by:

ñ(i)
jt =ñjt +õjt"

(i)
jt ;

where "(i)
jt is a random sample from a multi-variate standardized normal distribution.

2ç The random variable "jt (j = 0; . . . ;n; t = 1; . . . ;T ) follows that

"jt ò N (0;Ü) ;

where Ü is (n+ 1)T Ç (n+ 1)T correlation matrix.

ñ(i)
0t is the change rate of call rate. The call rate r(i)

t is calculated by:

r(i)
1 = r0 Ç

ê
1 +ñ(i)

01

ë
;

r(i)
t = r(i)tÄ1Ç

ê
1 +ñ(i)

0t

ë
; (t = 2; . . . ; T Ä 1):

Random samples are generated from two kinds of summary statistics for numerical tests. One

is the statistics calculated by historical data. Table 3 shows the summary statistics calculated
11The detail implementation method has not been expressed in those papers(Mulvey and Thorlacius, 1998;

Carino et al., 1998a,1998b and 1998c). If a set of scenarios is constructed by a tree structure to a suécient
degree, the problem size may grow exponentially.
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by the available market data; Nikko stock performance index (TSE 1), Nikko bond performance

index, Nikko CB performance index, and call rate.

Table 3: Summary statistics
cash stock bond CB

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
Exp. Value Ä 0:087 Ä 0:081 Ä 0:089 Ä 0:103 0:848 0:867 0:843 0:858 0:625 0:623 0:645 0:683 0:786 0:780 0:786 0:806

St. Dev. 0:780 0:784 0:778 0:759 5:571 5:582 5:595 5:591 1:372 1:372 1:353 1:233 3:543 3:541 3:538 3:525

Correlation 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 1:000 Ä 0:091 0:073 0:226 Ä 0:101 0:000 Ä 0:032 Ä 0:042 Ä 0:238 0:008 0:090 0:038 Ä 0:146 Ä 0:044 Ä 0:052 Ä 0:036

cash 2 Ä 0:091 1:000 Ä 0:092 0:074 0:045 Ä 0:094 Ä 0:007 Ä 0:032 Ä 0:183 Ä 0:237 0:011 0:093 Ä 0:012 Ä 0:144 Ä 0:047 Ä 0:053
3 0:073 Ä 0:092 1:000 Ä 0:123 0:016 0:042 Ä 0:091 Ä 0:002 Ä 0:166 Ä 0:188 Ä 0:221 0:068 Ä 0:062 Ä 0:017 Ä 0:138 Ä 0:037
4 0:226 0:074 Ä 0:123 1:000 Ä 0:015 0:012 0:048 Ä 0:085 Ä 0:055 Ä 0:176 Ä 0:156 Ä 0:145 Ä 0:029 Ä 0:072 Ä 0:005 Ä 0:122
1 Ä 0:101 0:045 0:016 Ä 0:015 1:000 0:022 Ä 0:031 0:030 0:145 Ä 0:173 Ä 0:096 Ä 0:065 0:761 0:042 Ä 0:045 Ä 0:056

stock 2 0:000 Ä 0:094 0:042 0:012 0:022 1:000 0:018 Ä 0:030 0:085 0:144 Ä 0:170 Ä 0:101 0:019 0:760 0:041 Ä 0:045
3 Ä 0:032 Ä 0:007 Ä 0:091 0:048 Ä 0:031 0:018 1:000 0:018 0:077 0:085 0:141 Ä 0:189 0:011 0:019 0:760 0:041
4 Ä 0:042 Ä 0:032 Ä 0:002 Ä 0:085 0:030 Ä 0:030 0:018 1:000 0:130 0:078 0:080 0:137 Ä 0:022 0:013 0:017 0:760
1 Ä 0:238 Ä 0:183 Ä 0:166 Ä 0:055 0:145 0:085 0:077 0:130 1:000 0:130 Ä 0:108 Ä 0:118 0:327 0:202 0:065 0:136

bond 2 0:008 Ä 0:237 Ä 0:188 Ä 0:176 Ä 0:173 0:144 0:085 0:078 0:130 1:000 0:137 Ä 0:106 Ä 0:114 0:327 0:204 0:068
3 0:090 0:011 Ä 0:221 Ä 0:156 Ä 0:096 Ä 0:170 0:141 0:080 Ä 0:108 0:137 1:000 0:072 Ä 0:180 Ä 0:109 0:321 0:192
4 0:038 0:093 0:068 Ä 0:145 Ä 0:065 Ä 0:101 Ä 0:189 0:137 Ä 0:118 Ä 0:106 0:072 1:000 Ä 0:117 Ä 0:182 Ä 0:142 0:315
1 Ä 0:146 Ä 0:012 Ä 0:062 Ä 0:029 0:761 0:019 0:011 Ä 0:022 0:327 Ä 0:114 Ä 0:180 Ä 0:117 1:000 0:092 Ä 0:068 Ä 0:032

CB 2 Ä 0:044 Ä 0:144 Ä 0:017 Ä 0:072 0:042 0:760 0:019 0:013 0:202 0:327 Ä 0:109 Ä 0:182 0:092 1:000 0:093 Ä 0:066
3 Ä 0:052 Ä 0:047 Ä 0:138 Ä 0:005 Ä 0:045 0:041 0:760 0:017 0:065 0:204 0:321 Ä 0:142 Ä 0:068 0:093 1:000 0:090
4 Ä 0:036 Ä 0:053 Ä 0:037 Ä 0:122 Ä 0:056 Ä 0:045 0:041 0:760 0:136 0:068 0:192 0:315 Ä 0:032 Ä 0:066 0:090 1:000

The other is the virtual statistics considering serial correlations between diãerent two periods.

It is one of the important concerns in the multi-period model to take the serial correlation

of the asset price into consideration. We denotes c to be the parameter associated with the

serial correlation. Eleven cases of diãerent parameters are tested to examine the eãect of serial

correlation as in Table 4.

The parameter c is also the autocorrelation of each asset itself between period t and period

t + 1 (t = 1;2;3). Serial correlation coeécients between period t and period t+ 1 are c times

the correlation coeécients as in Table 5. Serial correlation coeécients between period t and
period t+k are 0.3 times the serial correlation coeécients between period t and period t+kÄ1,

(k = 2; 3). Expected value and standard deviation of rate of return are the same values in each

period as in Table 6.

Table 4: Eleven kinds of correlation parameters
Case cm5 cm4 cm3 cm2 cm1
Parameter c = Ä0:5 c = Ä0:4 c = Ä0:3 c = Ä0:2 c = Ä0:1
Case cp0 cp1 cp2 cp3 cp4 cp5
Parameter c= 0:0 c= 0:1 c= 0:2 c = 0:3 c = 0:4 c = 0:5
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Table 5: Correlation matrix
Correlation

cash(t) stock(t) bond(t) CB(t)
cash(t) 1 Ä0:10 Ä0:25 Ä0:15
stock(t) Ä0:10 1 0:15 0:75
bond(t) Ä0:25 0:15 1 0:30
CB(t) Ä0:15 0:75 0:30 1
S.C.(Ü1) : correlationÇc

cash(t+ 1) stock(t+ 1) bond(t+ 1) CB(t+ 1)
cash(t) c Ä0:10c Ä0:25c Ä0:15c
stock(t) Ä0:10c c 0:15c 0:75c
bond(t) Ä0:25c 0:15c c 0:30c
CB(t) Ä0:15c 0:75c 0:30c c
S.C.(Ü2) : S.C.(Ü1)Ç0:3

cash(t+ 2) stock(t+ 2) bond(t+ 2) CB(t+ 2)
cash(t) 0:300c Ä0:030c Ä0:075c Ä0:045c
stock(t) Ä0:030c 0:300c 0:045c 0:225c
bond(t) Ä0:075c 0:045c 0:300c 0:090c
CB(t) Ä0:045c 0:225c 0:090c 0:300c
S.C.(Ü3) : S.C.(Ü2)Ç0:3

cash(t+ 3) stock(t+ 3) bond(t+ 3) CB(t+ 3)
cash(t) 0:0900c Ä0:0009c Ä0:0225c Ä0:0135c
stock(t) Ä0:0090c 0:0900c 0:0135c 0:0675c
bond(t) Ä0:0225c 0:0135c 0:0900c 0:0270c
CB(t) Ä0:0135c 0:0675c 0:0270c 0:0900c
S.C. : serial correlation(autocorrelation, cross-autocorrelation)

Table 6: Expected rate of return and standard deviation of rate of return
Rate of return cash stock bond CB
Exp. Value 0.0% 0.85% 0.6% 0.75%
St. Dev 0.4% 5.5% 1.4% 3.5%

3.2 Procedure of generating extended decision tree

We need to classify and bundle the simulated paths to make conditional decisions in the hybrid

model. Hibiki(2003) showed two kinds of classifying methods as follows.

(1) Sequential clustering method (SQC method)

This method is applied to the data set of simulated paths over the planning period by

using the well-known hierarchical clustering method in each period sequentially. Generated

clusters represent the åxed-decision nodes. The method is implemented based on similarities

calculated by distances between sampled return vectors.

(2) Portfolio based clustering method (PBC method)

This method is applied to the wealth of path i at time t which is calculated by any portfolio

over the planning period. We can use any portfolio, such as an equally weighted portfolio,

an optimal portfolio derived by solving the simulated path model , and so on. But it is
dependent on which portfolios are appropriate to the model. Therefore, we need to compare

some portfolios to solve the model.

Because Hibiki(2003) showed the PBC method with an optimal portfolio for the simulated path

model (S-PBC method) is the best method among these methods, the S-PBC method is used
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in this paper. This method is applied not only to bundle the simulated paths but also to make

a scenario tree.

3.3 Generating a scenario tree from simulated paths to compare the scenario
tree model with the hybrid model

We should not compare the eécient frontiers derived from two kinds of models, which use

diãerent scenario structures. We generate a scenario tree based on the `path to tree' procedure

as mentioned before. The following steps are proposed to compare two kinds of models. .

Step 1: We generate simulated paths and bundle them using the S-PBC method. We solve

the hybrid model with the åxed-proportion strategy for several risk-averse coeécients,
and derive optimal investment ratios. We calculate several expected terminal wealth

and risk to describe the eécient frontier. This step is the standard procedure for the

hybrid model.

Step 2: We generate a scenario tree from the simulated paths used when solving the hybrid

model in Step 1, and calculate prices on the scenario tree.

Step 3: We solve the scenario tree model for several risk-averse coeécients, and derive optimal

investment units. We calculate optimal investment ratios from optimal investment

units.

Step 4: We apply the optimal investment ratios derived from the scenario tree model to the

hybrid model, and calculate several expected terminal wealth and risk to describe the

relationship curve between them.

Step 5: We compare the curve of the scenario tree model with the eécient frontier of the

hybrid model derived in Step 1.

We explain the details from Step 2 to Step 4.

Step 2: Procedure of generating a scenario tree from simulated paths

1ç Calculation of the average value

The average rates of returns are calculated from period 1 to period T Ä1 because ñ(i)
jT can be

used as the rate of return in the period T. We compute ñsjt, the average rate of return at node

s.

ñsjt =
1
jV s
t j
X
i2V st

ñ(i)
jt ; (j = 1; . . . ;n; t = 1; . . . ;T Ä 1; s 2 St)

where ñ(i)
jt is the rate of return for asset j, period t, and path i. Set of paths V st generated in

Step 1 must be used. jV s
t j denotes the number of paths in the set.

2ç The moment matching
ñsjt is adjusted so that the expected value and standard deviation of ñsjt calculated are equiv-

alent to those of ñ(i)
jt .
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ñsjt =
†
ñsjt Äñjt
õSjt

!
Çõjt +ñjt; (j = 1; . . . ;n; t = 1; . . . ; T Ä 1; s 2 St)

where ñjt] denotes expected rate of return of ñ(i)
jt , õjt] denotes standard deviation of rate of

return of ñ(i)
jt , and õSjt denotes standard deviation of ñsjt. The mean and standard deviation of

the scenario tree model match those of the hybrid model. However, the correlations between

assets and the serial correlations of the scenario tree model does not match those of the hybrid

model. This is because of the technical issue.

3ç Price ösjt are calculated as follows;

ösj1 = öj0(1 +ñsj1); (j = 1; . . . ; n; s 2 S1)

ösjt = ös
0
j;tÄ1(1 +ñsjt); (j = 1; . . . ; n; t = 2; . . . ; T Ä1; s 2 St)

ö(i)
jT = ös0j;TÄ1(1 +ñ(i)

jT); (j = 1; . . . ; n; i 2 V s0TÄ1; s0 2 STÄ1)

The number of scenarios are also I in the scenario tree model. The number of paths through

the node s0 of time T Ä1 is jV s0
TÄ1j (s0 2 STÄ1), which depends on the branching tree.

Step 3: Solving the scenario tree model, and calculating optimal investment proportions

We can derive optimal investment units by solving the scenario tree model; zÉj0, zsÉjt (optimal

solutions of risky asset) and vÉ0, vsÉt (optimal solutions of cash). Optimal investment proportions

are computed as follows;

wÉj0 ë
öj0zÉj0
W0

: Investment proportion of risky asset j at time 0.

cÉ0 ë
vÉ0
W0

: Investment proportion of cash at time 0.

wsÉjt ë
ösjtz

sÉ
jt

WsÉ
t

: Investment proportion of risky asset j for time t and state s.

csÉt ë vsÉt
WsÉ
t

: Investment proportion of cash for time t and state s.

Step 4: Evaluation of optimal solutions of the scenario tree model on the simulated paths

We evaluate the optimal investment proportions derived from the scenario tree model on the

simulated paths. The expected terminal wealth and risk(LPM1) are calculated using rates of

return on simulated paths to describe the relationship curve between them.

Expected terminal wealth : WT ë
1
I

IX
i=1

W (i)É
T

Risk : LPM1 ë
1
I

IX
i=1

max
ê
WG ÄW (i)É

T ;0
ë

where
R(i)É

1 =
nX
j=1

ê
1 +ñ(i)

j1

ë
wÉj0 + (1 + r0) cÉ0; (i 2 V s1 ; s 2 S1)

R(i)É
t =

nX
j=1

ê
1 +ñ(i)

jt

ë
ws
0É
j;tÄ1 +

ê
1 + r(i)

tÄ1

ë
cs
0É
tÄ1; (i 2 V s

t ; t = 2; . . . ; T; s0 2 StÄ1)
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W(i)É
T =

† TY
t=1

R(i)É
t

!
W0; (i = 1; . . . ; I)

4 Numerical tests : comparison of the models

We report results of numerical tests 12 . We compare two models numerically; the hybrid model

with the åxed-proportion strategy and the scenario tree model. In addition, the hybrid model

with the åxed-unit strategy is also tested for the purpose of reference. Four assets(stock, bond,

convertible bond(CB), and cash) are solved over four periods. The number of scenarios(simulated

paths) is 10,000. The number of constraints except non-negative constraints is about 50,000,

and the number of decision variables is also about 50,000. The size of branching tree depends

on the case. .

Initial prices of stock, bond, and CB can be assumed to be 1 without loss of generality. The

initial call rate is 0.44%. The initial wealth is 100 million Japanese yen, and the target terminal

wealth is also 100 million Japanese yen.

We have four kinds of numerical tests;

Case A1: Basic results for the 5-4-3 branching tree using statistics of historical data.

Case B1: Basic results for the 5-4-3 branching tree using virtual statistics considering various

serial correlations.

Case A2: Comparison of the results for various numbers of N-N-N branching trees using statis-

tics of historical data. (N= 2;3; . . . ;13)

Case A3: Comparison of the results for various branching trees under the same number of
nodes at time 3 using statistics of historical data.

We examine the basic features about the diãerence between the scenario tree model and the

hybrid model in the Case A1. The number of states(paths) which comes out of each state(node)

at time T Ä 1 is 166 or 167 in the scenario tree model(hybrid model). We test how the serial

correlations aãect the diãerence between two kinds of models in the Case B1. The larger the size

of the branching tree, the larger the number of states from time 1 to time 3 in the scenario tree

model. On the other hand, the number of states(paths) remains in the hybrid model even if the

size of the branching tree become larger. How does this diãerence between two kinds of models
aãect the results? We answer this question in the Case A2. It is important to compare models

under the various structures of branching trees. In the Case A3, we examine the diãerence of

these models under the condition that the number of decision nodes(states) remains at time 3
13.

12All of the problems are solved using NUOPT(Ver. 5.1.0a) | mathematical programming software developed
by Mathematical System, Inc. on Windows 2000 personal computer which has 1.8 GHz CPU and 768MB memory.

13The number of states(paths) which comes out of each state(node) at time T Ä 1 depends on 'N-N-N' in the
Case A2, but they have the same value in the Case A3.
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Legend symbols in the ågures of eécient frontier indicate the following meaning.

Scenario Eécient frontier of the scenario tree model
Scenario(H) Relationship curve between the expected terminal wealth and risk

of the scenario tree model evaluated on simulated paths
Hybrid(R) Eécient frontier of the hybrid model with the åxed-proportion strategy
Hybrid(U) Eécient frontier of the hybrid model with the åxed-unit strategy

4.1 Case A1: Basic results for the 5-4-3 branching tree using statistics of
historical data
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Figure 4: Eécient Frontier

Figure 4 shows the eécient frontier of the 5-4-3 branching tree using statistics of historical data.

The problem solved by the scenario tree model is over-evaluated because of the insuécient

description of uncertainties associated with asset returns. When we evaluate optimal solutions

of the scenario tree model on the simulated paths, the eécient frontier moves downwards, and
it cannot have low risk. The eécient frontier of the hybrid model with the åxed-proportion

strategy[`Hybrid(R)'] is better than the relationship curve of the scenario tree model evaluated

on the simulated paths[`Scenario(H)']. The hybrid model can evaluate and control risk better

than the scenario tree model. The åxed-proportion strategy dominates the åxed-unit strategy

in the hybrid model. This is because we need to hold cash after time 1 to execute transactions

for the åxed-unit strategy in the simulated path approach. On the other hand, we do not always

have to hold cash for the åxed-proportion strategy. When çis large, two strategies have almost

the same values, because cash is held to reduce risk. When çis small, the eécient frontier of the

hybrid model with the åxed-unit strategy[`Hybrid(U)'] is worse than the relationship curve of

the scenario tree model evaluated on the simulated paths[`Scenario(H)'] due to the same reason.

We can verify by studying Figure 5, which shows the average investment ratios at each time.
The horizontal axis is 16 kinds of the risk-averse coeécients(ç). The smaller the risk-averse

coeécients(ç), the more cash the åxed-unit strategy holds than the åxed-proportion strategy.
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Dynamic portfolios of two strategies of the hybrid model are similar each other except cash.

Optimal solutions of the scenario tree model are diãerent from those of the hybrid model,

and they are very extreme solutions at time 0. This is because the scenario tree model has less

scenarios in period 1 than those of the hybrid model.
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Figure 5: Average Investment Ratio

4.2 Case B1: Basic results for the 5-4-3 branching tree using virtual statistics
considering the serial correlation

Figure 6 shows 11 kinds of the eécient frontiers for the 5-4-3 branching tree using virtual

statistics considering various serial correlations. The larger the parameter c, the closer the
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eécient frontier of the hybrid model[`Hybrid(R)'] to that of the relationship curve of the scenario

tree model evaluated on the simulated paths[`Scenario(H)'], but which cannot also have the

solutions of low risk in this case. The smaller the absolute value of the parameter c is, the

closer the eécient frontier of the scenario tree model is to both the eécient frontier of the

hybrid model[`Hybrid(R)'] and the relationship curve of the scenario tree model evaluated on

the simulated paths[`Scenario(H)']. In other words, the larger the absolute value of the parameter

c, the more over-evaluated the eécient frontier of the scenario tree model[`Scenario'].
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Figure 6: Eécient frontier

Figure 7 and Figure 8 show the investment ratios at time 0 for 16 kinds of risk-averse coeé-

cients (ç). The horizontal axis of Figure 7 is the risk averse coeécients (ç), and the horizontal

axis of Figure 8 is the serial correlation parameter (c).
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Figure 7: Investment Ratio at time 0
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Figure 8: Investment Ratio at time 0
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Whatever the parameter c is set, the optimal solutions between the hybrid model and the

scenario tree model are diãerent as well as the result of the Case A1. The optimal solutions

of two strategies of the hybrid model are similar as well. We ånd the relationship between

the parameter c and the investment proportions in the hybrid model in Figure 8. However,

we cannot ånd the relationship in the scenario tree model. This is because the original serial

correlations do not seem to be kept when we construct the scenario tree from the simulated

paths. If we examine the relationship in the scenario tree model, we need to develop the other

procedure to make a scenario tree. This issue will be our future research.

4.3 Case A2: Comparison of the N-N-N branching trees using statistics of
historical data
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Figure 9: Eécient frontier
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Figures 9 shows the eécient frontiers for various numbers of branching trees (N-N-N branching

trees) using statistics of historical data. Even if the number of branching trees increases, the

degree of diãerence between two models is similar to that of the 5-4-3 branching tree. The

eécient frontier derived from the scenario tree model is also over-evaluated. But the larger the

size of the branching tree, not only the better the relationship curve but also the smaller the

minimum risk of the relationship curve of the scenario tree model evaluated on the simulated

paths[`Scenario(H)']. This reason is that the scenario tree model that has the larger branching

tree can describe more accuracy of uncertainties, and control risk. However, the relationship

curve is still dominated by the eécient frontier of the hybrid model with the åxed-proportion

strategy.
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Figure 10: Investment Ratio at time 0

Figure 10 show the investment ratios at time 0 of the two models. Optimal solutions of

the scenario tree model are diãerent from those of the hybrid model like the case of the 5-4-3

branching tree. Optimal solutions of the scenario tree model are more sensitive to the change

of the number of branching tree than those of the hybrid model. The larger the size of the
branching tree, the more risky assets we tend to invest in at time 0 for both models. This is

because more çexible investments can control risk, even if more risky assets are invested in at

time 0.

4.4 Case A3 : Comparison of the branching trees under the same number of
nodes at time 3 using statistics of historical data

Figures 11 and 12 show the eécient frontiers and the investment ratios at time 0 of the two

models. The larger the number of nodes, the more upwards the eécient frontier moves. However,

the relationship between the two models is almost the same results as the previous cases.
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Figure 12: The case of 3,000 nodes
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We examine how it diãers by the diãerence of branching trees for each model. Eécient

frontiers can be divided into some groups for every number of nodes as follows. The ågure in

the parenthesis expresses the number of nodes at time 2.

# of nodes branching trees
2,000 20-10-10(200) 20-20-5(400) 40-10-5(400) 80-5-5(400)
3,000 30-10-10(300) 30-20-5(600) 60-10-5(600) 120-5-5(600)

We can compare these branching trees as the following manner, and group pairs of branching

trees.

Group 1: Comparison of the cases that the numbers of nodes at both time 1 and time 2 are

diãerent each other, such as `20-10-10'(20 at time 1 and 200 at time 2) and `40-10-

10'(40 at time 1 and 400 at time 2).

Group 2: Comparison of the cases that the numbers of nodes are same at time 1, but are

diãerent each other at time 2, such as `20-10-10'(20 at time 1 and 200 at time 2) and

`20-20-5'(20 at time 1 and 400 at time 2).

Group 3: Comparison of the cases that the numbers of nodes are diãerent each other at time

1, but are same at time 2, such as `20-20-10'(20 at time 1 and 400 at time 2) and

`40-10-10'(40 at time 1 and 400 at time 2).

The pairs of eécient frontiers in Group 1 are the most diãerent each other, and so are they

in Group 2. The pairs of eécient frontiers in Group 3 are more similar than those of the other

groups relatively. This is because there are a lot of paths through each node at the time 1.

The diãerence seems to be reduced in comparison with the case that the number of paths are

diãerent each other at time 2 as in Group 2.

5 Concluding Remarks

The scenario tree model is typically used for the dynamic portfolio optimization, but it has

a serious problem about describing the uncertainties. The hybrid optimization model using

simulated paths and the decision tree allows both the describing of the uncertainties with high

accuracy and the making of conditional decisions. The previous papers(Hibiki, 2001b and 2003)

show some features of the hybrid model, but do not examine how the hybrid model is better

than the scenario tree model. In this paper, we compare two types of multi-period stochastic

optimization (MPSO) models by using numerical tests, and illustrate the diãerence between

them. Our contributions and related future research of this paper are as follows;

(1) We develop the iterative algorithm to solve the hybrid model with the åxed-proportion

strategy approximately. This algorithm is applied to the non-convex problem, but it is

much stable because the linear programming problem is solved iteratively. This algorithm

seems to work well, but we must keep considering the new algorithm because it does not

guarantee to derive the global optimal solutions.

25



(2) We develop the method of comparing two kinds of models with the diãerent scenario struc-

tures. In this method, the mean and standard deviation of asset returns of the simulated

paths match those of the scenario tree model each period, but the correlations do not match

each other because of the technical issue. We need to develop the correlaton matching

method to construct a scenario tree from simulated paths, though it is a diécult problem.

Moreover, we need to compare two models using the `tree to path' procedure in order to

compare it with the `path to tree' procedure we adopt in this paper, though it is diécult to

construct the appropriate scenario tree.

(3) We test some cases to compare two kinds of models using numerical examples. We can

show that the hybrid model can evaluate and control risk better than the scenario tree

model by using some numerical tests. Two kinds of summary statistics are tested under
the scenario generating procedure. We should compare them under the various scenario

generating models.
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